Clarify Some Issues on the Sparse Bayesian Learning for Sparse Signal Recovery
نویسندگان
چکیده
Sparse Bayesian learning (SBL) is an important family of algorithms for sparse signal recovery and compressed sensing. It has shown superior recovery performance in challenging practical problems, such as highly underdetermined inverse problems, recovering signals with less sparsity, recovering signals based on highly coherent measuring/sensing/dictionary matrices, and recovering signals with rich structure. However, its advantages are smeared in current literature due to some misunderstandings on the parameters of SBL and incorrect parameter settings in algorithm comparison and practical use. This work clarifies some important issues, and serves as a guidance for correctly using SBL.
منابع مشابه
Speech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملSparse Bayesian Learning in Compressive Sensing
Traditional Compressive Sensing (CS) recovery techniques resorts a dictionary matrix to recover a signal. The success of recovery heavily relies on finding a dictionary matrix in which the signal representation is sparse. Achieving a sparse representation does not only depend on the dictionary matrix, but also depends on the data. It is a challenging issue to find an optimal dictionary to recov...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملBAYESIAN SPARSE SIGNAL RECOVERY By XING TAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy BAYESIAN SPARSE SIGNAL RECOVERY By Xing Tan December 2009 Chair: Jian Li Major: Electrical and Computer Engineering Sparse Bayesian learning (SBL) was first proposed in the machine learning literature and later applied to sparse signal r...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012